This book presents a definitive account of the applications of the algebraic L-theory to the surgery classification of topological manifolds. The central result is the identification of a manifold structure in the homotopy type of a Poincare duality space with a local quadratic structure in the chain homotopy type of the universal cover. The difference between the homotopy types of manifolds and Poincare duality spaces is identified with the fibre of the algebraic L-theory assembly map, which passes from local to global quadratic duality structures on chain complexes. The algebraic L-theory assembly map is used to give a purely algebraic formulation of the Novikov conjectures on the homotopy invariance of the higher signatures; any other formulation necessarily factors through this one. The book is designed as an introduction to the subject, accessible to graduate students in topology; no previous acquaintance with surgery theory is assumed, and every algebraic concept is justified by its occurrence in topology.
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 onlinetoolsland.com All Rights Reserved. 本本书屋 版权所有