Ethem ALPAYDIN is Professor in the Department of Computer Engineering, Bogazici University, Istanbul Turkey and is a member of the Science Academy, Istanbul. He received his PhD from the Ecole Polytechnique Fédérale de Lausanne, Switzerland in 1990 and was a postdoc at the International Computer Science Institute, Berkeley in 1991. He was a Fulbright scholar in 1997. He was a visiting researcher at MIT, USA in 1994, IDIAP, Switzerland in 1998 and TU Delft, The Netherlands in 2014.
Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition -- as well as some we don't yet use everyday, including driverless cars. It is the basis of the new approach in computing where we do not write programs but collect data; the idea is to learn the algorithms for the tasks automatically from data. As computing devices grow more ubiquitous, a larger part of our lives and work is recorded digitally, and as "Big Data" has gotten bigger, the theory of machine learning -- the foundation of efforts to process that data into knowledge -- has also advanced. In this book, machine learning expert Ethem Alpaydin offers a concise overview of the subject for the general reader, describing its evolution, explaining important learning algorithms, and presenting example applications. Alpaydin offers an account of how digital technology advanced from number-crunching mainframes to mobile devices, putting today's machine learning boom in context. He describes the basics of machine learning and some applications; the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances, with such applications as customer segmentation and learning recommendations; and reinforcement learning, when an autonomous agent learns act so as to maximize reward and minimize penalty. Alpaydin then considers some future directions for machine learning and the new field of "data science," and discusses the ethical and legal implications for data privacy and security.
發表於2024-11-09
Machine Learning 2024 pdf epub mobi 電子書 下載
圖書標籤: 科普 MachineLearning 社會學 機器學習 教育技術
僞專傢。簡要介紹瞭模式識彆、神經網絡、推薦係統,作為一本引論性的書可以理解。但任何一個問題都沒有講清楚,就無法接受瞭。連機器學習的曆史都沒有介紹,不懂其發展脈絡,讀者如墜雨霧中。機器學習的理論基礎是統計學。統計學稱inference,機器學習稱estimation。第57頁 it's the parameters that are adjustable, and it's this process of adjustment to better match the data that we call learning.
評分很適閤想瞭解機器學習的初學者
評分僞專傢。簡要介紹瞭模式識彆、神經網絡、推薦係統,作為一本引論性的書可以理解。但任何一個問題都沒有講清楚,就無法接受瞭。連機器學習的曆史都沒有介紹,不懂其發展脈絡,讀者如墜雨霧中。機器學習的理論基礎是統計學。統計學稱inference,機器學習稱estimation。第57頁 it's the parameters that are adjustable, and it's this process of adjustment to better match the data that we call learning.
評分很適閤想瞭解機器學習的初學者
評分很適閤想瞭解機器學習的初學者
Machine Learning 2024 pdf epub mobi 電子書 下載