Graph-theoretic Techniques For Web Content Mining

Graph-theoretic Techniques For Web Content Mining pdf epub mobi txt 电子书 下载 2025

出版者:World Scientific Publishing Co Pte Ltd
作者:Abraham Kandel
出品人:
页数:248
译者:
出版时间:2005-5-31
价格:GBP 104.00
装帧:Hardcover
isbn号码:9789812563392
丛书系列:
图书标签:
  •  
想要找书就要到 本本书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

This book describes exciting new opportunities for utilizing robust graph representations of data with common machine learning algorithms. Graphs can model additional information which is often not present in commonly used data representations, such as vectors. Through the use of graph distance - a relatively new approach for determining graph similarity - the authors show how well-known algorithms, such as k-means clustering and k-nearest neighbors classification, can be easily extended to work with graphs instead of vectors. This allows for the utilization of additional information found in graph representations, while at the same time employing well-known, proven algorithms. To demonstrate and investigate these novel techniques, the authors have selected the domain of web content mining, which involves the clustering and classification of web documents based on their textual substance. Several methods of representing web document content by graphs are introduced; an interesting feature of these representations is that they allow for a polynomial time distance computation, something which is typically an NP-complete problem when using graphs. Experimental results are reported for both clustering and classification in three web document collections, using a variety of graph representations, distance measures, and algorithm parameters. In addition, this book describes several other related topics, many of which provide excellent starting points for researchers and students interested in exploring this new area of machine learning further. These topics include creating graph-based multiple classifier ensembles through random node selection and visualization of graph-based data using multidimensional scaling.

具体描述

读后感

评分

评分

评分

评分

评分

用户评价

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 onlinetoolsland.com All Rights Reserved. 本本书屋 版权所有