This excellent text provides a comprehensive treatment of the state space approach to time series analysis. The distinguishing feature of state space time series models is that observations are regarded as made up of distinct components such as trend, seasonal, regression elements and disturbence terms, each of which is modelled separately. The techniques that emerge from this approach are very flexible and are capable of handling a much wider range of problems than the main analytical system currently in use for time series analysis, the Box-Jenkins ARIMA system. The book provides an excellent source for the development of practical courses on time series analysis.
难
评分难
评分难
评分难
评分难
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 onlinetoolsland.com All Rights Reserved. 本本书屋 版权所有