For turbulent flows at relatively low speeds there exists an excellent mathematical model in the incompressible Navier-Stokes equations. Why then is the 'problem of turbulence' so difficult? One reason is that these nonlinear partial differential equations appear to be insoluble, except through numerical simulations, which offer useful approximations but little direct understanding. Three recent developments offer new hope. First, the discovery by experimentalists of coherent structures in certain turbulent flows. Secondly, the suggestion that strange attractors and other ideas from finite-dimensional dynamical systems theory might play a role in the analysis of the governing equations. And, finally, the introduction of the Karhunen-Loeve or proper orthogonal decomposition. This book introduces these developments and describes how they may be combined to create low-dimensional models of turbulence, resolving only the coherent structures. This book will interest engineers, especially in the aerospace, chemical, civil, environmental and geophysical areas, as well as physicists and applied mathematicians concerned with turbulence.
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 onlinetoolsland.com All Rights Reserved. 本本书屋 版权所有