Dr. Denise Gosnell’s passion for examining, applying, and evangelizing the applications of graph data was ignited during her apprenticeship under Dr. Teresa Haynes and Dr. Debra Knisley during her first NSF Fellowship. This group’s work was one of the earliest applications of neural networks and graph theoretic structure in predictive computational biology. Since then, Dr. Gosnell has built, published, patented, and spoke on dozens of topics related to graph theory, graph algorithms, graph databases, and applications of graph data across all industry verticals.
Currently, Dr. Gosnell is with DataStax where she aspires to build upon her experiences as a data scientist and graph architect. Prior to her role with DataStax, she built software solutions for and spoke at over a dozen conferences on permissioned blockchains, machine learning applications of graph analytics, and data science within the healthcare industry.
Dr. Matthias Broecheler is a technologist and entrepreneur with substantial research anddevelopment experience who is focused on disruptive software technologies and understanding complex systems. Dr. Broecheler’s is known as an industry expert in graph databases, relational machine learning, and big data analysis in general. He is a practitioner of lean methodologies and experimentation to drive continuous improvement. Dr. Broecheler is the inventor of the Titan graph database and founder of Aurelius.
This book will enable you to apply graph thinking to solve complex problems. If you want to learn how to build architectures for extracting value for your domain’s complex problems, then this book is for you.
You’ll learn how to think about your data as a graph, and how to determine if graph technology is right for your application. The book describes techniques for scalable, real-time, and multimodel architectures that solve complex problems, and shows how companies are successfully applying graph thinking in distributed production environments.
Authors Denise Koessler Gosnell and Matthias Broecheler also introduce the Graph Schema Language, a set of terminology and visual illustrations to normalize how graph practitioners communicate conceptual graph models, graph schema, and graph database design.
發表於2024-11-28
The Practitioner's Guide to Graph Data 2024 pdf epub mobi 電子書 下載
圖書標籤: graph 計算機科學 計算機 data 數據庫 大數據
The Practitioner's Guide to Graph Data 2024 pdf epub mobi 電子書 下載