The first part by Joseph Lipman is a full exposition of the abstract foundations of Grothendieck duality theory for schemes (twisted inverse image, tor-independent base change, ...), in part without noetherian hypotheses, and with some refinements for maps of finite tor-dimension. The ground is prepared by a lengthy treatment of the rich formalism of relations among the derived functors, for unbounded complexes over ringed spaces, of the sheaf functors tensor, hom, direct and inverse image. Included are enhancements, for quasi-compact quasi-separated schemes, of classical results such as the projection and K nneth isomorphisms. In the second part, written independantly by Mitsuyasu Hashimoto, the theory is extended to the context of diagrams of schemes. This includes, as a special case, an equivariant theory for schemes with group actions. In particular, after various basic operations on sheaves such as (derived) direct images and inverse images are set up, Grothendieck duality and flat base change for diagrams of schemes are proved. Also, dualizing complexes are studied in this context. As an application to group actions, we generalize Watanabe's theorem on the Gorenstein property of invariant subrings.
發表於2024-11-05
Foundations of Grothendieck Duality for Diagrams of Schemes (Lecture Notes in Mathematics) 2024 pdf epub mobi 電子書 下載
圖書標籤: 數學 grothendieck 數學-專 Math
格羅滕迪剋的六個算子(張量,hom,推前和拖迴),其中最關鍵的是twisted inverse image functor是(Serre’s duality的推廣)性質:局部化,擬函子性,對偶性,本質性質是平坦基互容和構造擬凝聚上同調。凝聚層是嚮量叢等價物的阿貝範疇。
評分格羅滕迪剋的六個算子(張量,hom,推前和拖迴),其中最關鍵的是twisted inverse image functor是(Serre’s duality的推廣)性質:局部化,擬函子性,對偶性,本質性質是平坦基互容和構造擬凝聚上同調。凝聚層是嚮量叢等價物的阿貝範疇。
評分格羅滕迪剋的六個算子(張量,hom,推前和拖迴),其中最關鍵的是twisted inverse image functor是(Serre’s duality的推廣)性質:局部化,擬函子性,對偶性,本質性質是平坦基互容和構造擬凝聚上同調。凝聚層是嚮量叢等價物的阿貝範疇。
評分格羅滕迪剋的六個算子(張量,hom,推前和拖迴),其中最關鍵的是twisted inverse image functor是(Serre’s duality的推廣)性質:局部化,擬函子性,對偶性,本質性質是平坦基互容和構造擬凝聚上同調。凝聚層是嚮量叢等價物的阿貝範疇。
評分格羅滕迪剋的六個算子(張量,hom,推前和拖迴),其中最關鍵的是twisted inverse image functor是(Serre’s duality的推廣)性質:局部化,擬函子性,對偶性,本質性質是平坦基互容和構造擬凝聚上同調。凝聚層是嚮量叢等價物的阿貝範疇。
Foundations of Grothendieck Duality for Diagrams of Schemes (Lecture Notes in Mathematics) 2024 pdf epub mobi 電子書 下載