Preface
Acknowledgements
Part Ⅰ: Technical aspects of bosonization
A simple case of Bose-Fermi equivalence: Jordan-Wigner transformation
One-dimensional fermion tates near the Fermi points
Chiral anomaly
Anomalous commutators
Ganssian model. Lagrangian formulation
Bosonization
Interaction with an electromagnetic field; gauge invariance
Conformal symmetry and finite size effects
Gaussian model in the Hamiltonian formulation
Virasoro algebra
Ward identities
Subalgebra sl(2)
Structure of Hilhert space in conformal theories
Differential equations for correlation functions
Dotsenko——Fateev bosonization scheme for the minimal models
Current (Kac-Moody) algebras; the first assault
Sugawara Hamiltonian for Wess-Zumino-Novikov-Witten model
Knizhnik-Zamolodchikov (KZ) equations
Relevant and irrelevant fields
Bose-Einstein Condensation in two dimensions; Beresinskii-
Kesterlitz-Thouless transition
The sine-Gordon model
The renormalization group analysis
Exact solution of the sine-Gordon model
Spin S-1/2 Heisenberg-lsing chain
Explicit expression for the dynamical magnetic susceptibility
Ising model
More about the WZNW model
Special cases
1.1 SU1(2) WZNW model as a Gaussian model
1.2 SU2(2) WZNW model and the Ising model
1.3 SU4(2) as a theory of two bosonic fields
1.4 SUI0(2) as a theory of three bosonic fields
Deformation of the WZNW model and coset constructions
Non-Abelian bosznization
WZNW model in the Lagrangian formulation
Derivation of the Lagrangian
Calculation of a nontrivial determinant
Part Ⅱ: Application of the bosonization technique to physical
Part Ⅲ Singleimpurityprobl
· · · · · · (
收起)