The theory of empirical processes provides valuable tools for the development of asymptotic theory in (nonparametric) statistical models, and makes possible the unified treatment of a number of them. This book reveals the relation between the asymptotic behaviour of M-estimators and the complexity of parameter space. Virtually all results are proved using only elementary ideas developed within the book; there is minimal recourse to abstract theoretical results. To make the results concrete, a detailed treatment is presented for two important examples of M-estimation, namely maximum likelihood and least squares. The theory also covers estimation methods using penalties and sieves. Many illustrative examples are given, including the Grenander estimator, estimation of functions of bounded variation, smoothing splines, partially linear models, mixture models and image analysis. Graduate students and professionals in statistics as well as those with an interest in applications, to such areas as econometrics, medical statistics, etc., will welcome this treatment.
發表於2025-01-11
Empirical Processes in M-Estimation 2025 pdf epub mobi 電子書 下載
圖書標籤: 統計 數學 非參數統計 統計學習 統計學 經濟計量學 不等式 2016
Many small typos but still solid.
評分Many small typos but still solid.
評分Many small typos but still solid.
評分整個夏天就是跟此書死磕。
評分整個夏天就是跟此書死磕。
Empirical Processes in M-Estimation 2025 pdf epub mobi 電子書 下載