Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.
发表于2024-12-22
The Elements of Statistical Learning 2024 pdf epub mobi 电子书
https://esl.hohoweiya.xyz/index.html ==========================================================================================================================================================
评分我导师(stanford博士毕业)非常欣赏这本书,并把它作为我博士资格考试的参考教材之一。 感谢 ZHENHUI LI 提供的信息。本书作者已经将第二版的电子书放到网上,大家可以免费下载。 http://www-stat.stanford.edu/~tibs/ElemStatLearn/ 网上还有一份solution manual, 但是似乎...
评分douban评论非要给出评价才能发表,这非常难决断 说你好呢,翻译的乱七八糟 说你不好呢,内容实在深刻 说起翻译来,这可是把中文说的比外文还难懂 Jiawei Han的数据挖掘让范明译的污七八糟 结果还让他来翻译这部经典,怀疑他在用google翻译 最后还是忍不住去图书馆复印了原版...
评分英文原版的官方免费下载链接已经有人在书评中给出了 中文版的译者很可能没有基本的数学知识,而是用Google翻译完成了这部作品。 超平面的Normal equation (法线方程)翻译成了“平面上的标准方程”;而稍有高中髙维几何常识的人都知道,法线是正交与该超平面的方向,而绝不可...
图书标签: 机器学习 统计学习 数据挖掘 统计学 Statistics 数学 Learning Data-Mining
During the past decade there has been an explosion in computation and information technology. With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book descibes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learing (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting--the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful <EM>An Introduction to the Bootstrap</EM>. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
typo太多了,勘误居然有100多页。不要买first printing。
评分typo太多了,勘误居然有100多页。不要买first printing。
评分typo太多了,勘误居然有100多页。不要买first printing。
评分嗯外国大牛就喜欢给巨难的书起个简单名字。风格是点到为止和欲言又止,一点都不罗哩罗嗦,有基础的会热血沸腾,没基础的跟看天书差不多。后几章习题找不到答案。
评分typo太多了,勘误居然有100多页。不要买first printing。
The Elements of Statistical Learning 2024 pdf epub mobi 电子书