Inge Koch is Associate Professor of Statistics at the University of Adelaide, Australia.
“Big data” poses challenges that require both classical multivariate methods and contemporary techniques from machine learning and engineering. This modern text equips you for the new world – integrating the old and the new, fusing theory and practice and bridging the gap to statistical learning. The theoretical framework includes formal statements that set out clearly the guaranteed “safe operating zone” for the methods and allow you to assess whether data is in the zone, or near enough. Extensive examples showcase the strengths and limitations of different methods with small classical data, data from medicine, biology, marketing and finance, high-dimensional data from bioinformatics, functional data from proteomics, and simulated data. High-dimension low-sample-size data gets special attention. Several data sets are revisited repeatedly to allow comparison of methods. Generous use of colour, algorithms, Matlab code, and problem sets complete the package. Suitable for master's/ graduate students in statistics and researchers in data-rich disciplines.
Provides a balanced presentation of formal theory and data analysis
Offers extended examples using contemporary data, including high dimensional functional data sets
Colour graphics throughout, with downloadable data sets and Matlab code
發表於2025-01-26
Analysis of Multivariate and High-Dimensional Data 2025 pdf epub mobi 電子書 下載
圖書標籤: textbook統計 @網
兼顧極限性質&可視化:)
評分兼顧極限性質&可視化:)
評分兼顧極限性質&可視化:)
評分兼顧極限性質&可視化:)
評分兼顧極限性質&可視化:)
Analysis of Multivariate and High-Dimensional Data 2025 pdf epub mobi 電子書 下載