Cartilage Injury in the Athlete

Cartilage Injury in the Athlete pdf epub mobi txt 电子书 下载 2026

出版者:Thieme Medical Pub
作者:Mirzayan, Raffy
出品人:
页数:330
译者:
出版时间:
价格:$ 180.79
装帧:HRD
isbn号码:9781588903051
丛书系列:
图书标签:
  • Cartilage
  • Injury
  • Sports
  • Medicine
  • Athletes
  • Knee
  • Joint
  • Orthopedics
  • Biomechanics
  • Rehabilitation
  • Diagnosis
想要找书就要到 本本书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

This text provides essential information needed to serve the large population of young athletic patients with cartilage defects who are not yet candidates for joint arthroplasty. Nearly 350 illustrations facilitate the understanding of examination and operative techniques, including arthroscopic debridement, electrothermal chondroplasty, marrow stimulation, osteochondral autograft transfer (OATS/Mosaicplasty), autologous chondrocyte implantation, and osteochondral allografting. The text also addresses joint specific injuries in the shoulder, elbow, and ankle that are often neglected in other literature. Key Features: Reviews normal cartilage anatomy and cartilage response to injury to illuminate appropriate treatment techniques and healing processes. Covers non-operative techniques including analgesics, oral anti-inflammatory medications, neutraceuticals, and hyaluronic acid injections/viscosupplementation, allowing the clinician to expand treatment options. Descriptions of adjunctive procedures, such as meniscal transplant and corrective osteotomy. Provides insights on future directions in the detection and treatment of cartilage injuries.

Advanced Biomechanics of Human Movement: Principles and Applications A Comprehensive Text for Understanding and Optimizing Locomotor Function This exhaustive volume delves deep into the intricate physical principles governing human motion, providing an unparalleled resource for researchers, clinicians, biomechanists, and advanced students in exercise science, physical therapy, and engineering. Moving beyond superficial descriptions of movement, this book establishes a rigorous foundation in Newtonian and analytical mechanics as they apply directly to musculoskeletal function, tissue loading, and athletic performance. The text is structured systematically, progressing from fundamental physical concepts to complex, integrated biological applications. Part I: Foundations of Biomechanical Analysis This section meticulously establishes the theoretical framework necessary for quantitative movement analysis. Chapter 1: Review of Classical Mechanics and Kinematics A detailed re-examination of fundamental concepts: vectors, forces, moments (torques), and equilibrium. Emphasis is placed on applying these principles to static musculoskeletal configurations, such as standing posture and isometric contractions. Kinematic analysis is introduced, focusing on descriptors of motion—position, velocity, and acceleration—in both fixed and moving reference frames relevant to biological systems. Techniques for the precise measurement of motion capture (MOCAP) systems are critically reviewed, including calibration procedures and error analysis pertinent to 3D trajectory reconstruction. Chapter 2: Kinetics and Ground Reaction Forces This chapter transitions to the causes of motion, focusing on the forces that generate or alter movement. Detailed coverage is given to the measurement and interpretation of Ground Reaction Forces (GRF) using force plates. Comprehensive techniques for analyzing the time-series data of GRF, including impulse calculation, loading rates, and the determination of the center of pressure (COP) trajectory, are presented. Advanced concepts such as the relationship between GRF components and joint kinetics through the use of inverse dynamics models are introduced here, setting the stage for subsequent joint analysis. Chapter 3: Principles of Work, Energy, and Power The relationship between mechanical work, kinetic energy, and potential energy provides a powerful alternative perspective to purely force-based analysis. This section meticulously details the calculation of mechanical work done at the whole body and individual limb segments. A significant portion is dedicated to the concept of mechanical power, defined both as the rate of work done and as the product of joint moment and angular velocity. Practical applications focus on analyzing explosive movements (e.g., jumping, sprinting) where power generation is the critical determinant of performance outcome. The concept of mechanical efficiency in human locomotion is explored through the lens of metabolic cost. Part II: Segmental Dynamics and Modeling Part II moves from whole-body forces to the detailed analysis of individual body segments, essential for understanding muscle action and joint loading. Chapter 4: Rigid Body Dynamics of Limb Segments This chapter addresses the mathematical description of individual body segments (thigh, shank, upper arm, etc.) treated as rigid bodies. Derivation and practical application of segment mass, center of mass location, and moment of inertia tensors are covered extensively. The focus is on deriving the equations of motion for a segment in isolation, utilizing Newton-Euler or Lagrangean formulations, preparing the reader for the integration required in whole-body models. Emphasis is placed on reliable techniques for estimating these parameters in vivo. Chapter 5: Inverse and Forward Dynamics in Musculoskeletal Analysis This is a core chapter detailing the computational methods for translating external forces into internal joint loads. Inverse Dynamics is treated comprehensively, showing how GRFs and kinematic data are used sequentially to calculate net internal joint moments (torques) required to produce observed motion. Detailed practical examples using standard gait cycle data illustrate the calculation process. Conversely, Forward Dynamics is introduced, detailing how known muscle forces or externally applied torques can be used to predict subsequent motion, a crucial step in simulation and perturbation studies. Chapter 6: Soft Tissue Mechanics and Viscoelasticity Moving beyond rigid body approximations, this section explores the mechanical behavior of biological soft tissues under load. Detailed treatments of stress, strain, and constitutive models (Hookean, Neo-Hookean, Ogden) are applied specifically to tendons, ligaments, and fascia. Viscoelastic behavior—time and rate dependence—is characterized using Maxwell and Voigt models, explaining phenomena like stress relaxation and creep observed in connective tissues during prolonged loading or cyclic movement. Part III: Integration and Application in Human Performance The final section applies the established mechanical principles to complex, real-world scenarios in human movement science and rehabilitation engineering. Chapter 7: Analysis of Normal and Deviant Gait A foundational application of the preceding chapters. Detailed kinematic and kinetic profiles of normal walking and running gait are presented, emphasizing temporal, spatial, and dynamic variables across the gait cycle. The chapter then systematically analyzes common deviations in pathological gait patterns (e.g., Trendelenburg gait, stiff-knee gait), linking observed mechanical deficits (altered ground reaction patterns, reduced power generation) back to underlying neuromuscular or structural impairments. Chapter 8: Biomechanics of Eccentric and Concentric Muscle Actions This chapter deepens the understanding of muscle mechanics by distinguishing between contractile element behavior and the resulting macroscopic joint torques. The Force-Velocity relationship is analyzed in detail, contrasting the high power output potential during concentric actions with the higher force production capabilities during eccentric muscle actions. The mechanical role of passive muscle stiffness in energy storage and return, particularly during rapid stretch-shortening cycles, is explored using experimental data sets. Chapter 9: Contact Mechanics and Joint Loading Estimation Focus shifts to the interaction surfaces within diarthrodial joints (e.g., knee, hip). Methods for estimating internal contact forces, including pressure distribution mapping via Finite Element Modeling (FEM) concepts applied to articular cartilage surfaces, are discussed. The implications of altered joint kinematics (e.g., increased valgus collapse during landing) on localized joint reaction forces and resulting long-term degenerative changes are examined through sensitivity analysis. Chapter 10: Design and Evaluation of Assistive and Restorative Devices The culmination of the text focuses on engineering solutions informed by biomechanics. Principles of orthotics and prosthetics design are analyzed through the lens of achieving optimal force transmission and minimizing injurious loading. Detailed methodologies for evaluating the efficacy of physical interventions—such as gait retraining protocols or the integration of functional electrical stimulation (FES)—are presented, requiring quantification of changes in power generation, joint moment production, and external work performed post-intervention. --- Target Audience: Graduate students in Biomechanics, Kinesiology, Physical Therapy, Biomedical Engineering. Sports Medicine Physicians, Athletic Trainers, and Research Scientists in Human Performance. Prerequisites: University-level calculus, physics (mechanics), and introductory human anatomy/physiology are assumed.

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

作为一个对运动解剖学有着浓厚兴趣的健身教练,我一直希望找到一本能够系统性地讲解运动损伤,特别是软骨损伤的书籍。这本书无疑满足了我的需求。它不仅仅是枯燥的理论堆砌,而是将解剖学知识与实际的运动损伤紧密结合。我了解到,常见的运动姿势和动作,例如深蹲、跳跃、急停转身等,会对膝关节软骨产生怎样的应力分布,以及这些应力如何导致损伤。书中对不同运动项目(如篮球、足球、滑雪、长跑等)中特有的软骨损伤风险进行了分析,并提出了针对性的预防措施。例如,对于篮球运动员,书中详细讲解了膝关节在跳跃落地时受到的巨大冲击力,以及如何通过强化股四头肌和腘绳肌来分散压力。对于足球运动员,则侧重于讲解侧向移动和扭转动作对半月板的损伤。书中的案例分析部分也非常生动,通过几个典型的运动员受伤经历,更直观地展示了软骨损伤的发生机制和恢复过程。这让我能够更好地理解学员们在训练中可能遇到的问题,并为他们提供更个性化、更安全的指导。

评分

我是一名骨科医生,在临床实践中,经常会遇到各种与软骨损伤相关的病例,因此对这类专业书籍非常感兴趣。这本书在技术细节的呈现上,可以说达到了相当高的水准。它不仅回顾了软骨的基本解剖学和组织学,更深入探讨了软骨细胞的生物学行为,包括其信号传导通路、生长因子及其在组织修复中的作用。作者对于软骨损伤的分类和诊断方法也做了详尽的阐述,从影像学(MRI、CT)的解读到关节镜下的评估,都提供了非常实用的信息。书中对不同类型软骨损伤(如关节软骨剥脱、半月板撕裂、韧带损伤等)的病理生理过程进行了深入分析,并结合最新的研究进展,讨论了各种治疗策略的优缺点,包括保守治疗、微创手术(如关节镜清理、软骨修复术)以及一些前沿的再生医学方法(如干细胞疗法、组织工程)。我特别欣赏书中对循证医学证据的重视,很多观点都引用了大量的临床试验数据和Meta分析结果,这对于临床决策非常有指导意义。书中的参考文献列表也相当详尽,方便读者进一步深入研究。这本书不仅适合骨科医生,对于运动医学、康复治疗等相关领域的专业人士,也具有极高的参考价值。

评分

我是一名生物医学工程专业的学生,正在进行与运动康复相关的项目研究。在搜集资料的过程中,我偶然发现了这本书,它在技术深度和跨学科的整合方面给我留下了深刻的印象。书中对于软骨的生物材料学特性进行了详细的分析,包括其主要的组成成分(胶原蛋白、蛋白聚糖、水等)以及这些成分的比例和排列如何决定了软骨的力学性能。作者还将这些宏观的力学特性与微观的细胞行为联系起来,解释了在受到不同类型的载荷时,软骨细胞会如何响应,以及这种响应可能导致的结果。我尤其对书中关于“微应力”和“渗透性”的论述感兴趣,这些概念对于理解营养物质如何从滑液中输送到软骨内部,以及在损伤情况下,这种输送机制如何被破坏,提供了关键的见解。书中对各种修复策略的分析,也从工程学的角度出发,探讨了生物材料的设计、支架的构建、细胞的载入以及植入后的生物相容性和降解速率等问题。这本书为我提供了丰富的理论基础和研究思路,也让我看到了运动康复领域在生物工程技术应用上的巨大潜力。

评分

作为一名正在备战奥运会的国家级运动员,我知道每一次训练都伴随着巨大的风险,尤其是膝盖的保护,对我来说至关重要。这本书为我提供了一个全新的视角来理解我身体的“脆弱”部分。我一直以为伤病只是运气不好,或者训练强度太大,但书中让我明白,很多时候是生物力学上的细微失衡,或是微观层面的细胞损伤在日积月累。我被书中关于“软骨磨损”的解释深深吸引,它不是一夜之间的剧痛,而是像沙粒一点点磨蚀巨石,而我们很多时候直到沙粒堆积成山才意识到问题的严重性。书中对于“滑膜炎”和“骨刺”等伴随性损伤的描述,也让我意识到软骨损伤并非孤立存在,它会引发一系列连锁反应。最让我感到鼓舞的是,书中探讨了营养对软骨健康的长期影响,以及一些辅助性疗法,比如物理疗法、运动康复等,是如何帮助身体自我修复和增强抵抗力的。虽然我不能完全理解书中的所有专业术语,但我能感受到作者的用心,力图让每一个读者,无论专业背景如何,都能认识到软骨健康的重要性,并学会如何与之和谐共处,以达到更好的运动表现。

评分

作为一名业余跑步爱好者,平日里总有些小伤小痛,但这次膝盖的反应尤其让我不安。在朋友的推荐下,我翻开了这本书,尽管标题聚焦于运动员,但其深入浅出的讲解方式立刻吸引了我。书中的第一部分,详细地剖析了软骨的生物力学特性,我一直以为软骨就是一块简单的缓冲垫,没想到它如此复杂,拥有如此精巧的结构和功能。作者用生动的比喻,比如将软骨比作汽车的悬挂系统,解释了其在承受压力、吸收冲击以及润滑关节方面的作用。我尤其对“营养和代谢”这一章节印象深刻,了解到软骨细胞的新陈代谢速度非常缓慢,一旦受损,修复过程极其漫长,这让我更加理解了为何一些运动损伤会如此难以根治。书中的插图和图表也做得非常棒,清晰地展示了软骨的微观结构,以及不同类型损伤的形态,即使是没有医学背景的我,也能大致理解。虽然书中也提到了治疗方法,但作者并未止步于此,而是着重强调了预防的重要性,例如如何通过科学训练、合理热身和营养补充来保护我们的关节,这让我受益匪浅。这本书就像一本详尽的关节健康指南,让我对自己的身体有了更深层次的认识,也为我今后的运动方式提供了更科学的指导。

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 onlinetoolsland.com All Rights Reserved. 本本书屋 版权所有