if an irreducible representation is self-conjugate (unitarily equivalent to its complex conjugate) but not real (can't be given by all real matrices by choice of basis), then the representation space has the structure of a vector space over the quaternions in such a way that every representation matrix is quaternionic linear!
评分if an irreducible representation is self-conjugate (unitarily equivalent to its complex conjugate) but not real (can't be given by all real matrices by choice of basis), then the representation space has the structure of a vector space over the quaternions in such a way that every representation matrix is quaternionic linear!
评分if an irreducible representation is self-conjugate (unitarily equivalent to its complex conjugate) but not real (can't be given by all real matrices by choice of basis), then the representation space has the structure of a vector space over the quaternions in such a way that every representation matrix is quaternionic linear!
评分if an irreducible representation is self-conjugate (unitarily equivalent to its complex conjugate) but not real (can't be given by all real matrices by choice of basis), then the representation space has the structure of a vector space over the quaternions in such a way that every representation matrix is quaternionic linear!
评分if an irreducible representation is self-conjugate (unitarily equivalent to its complex conjugate) but not real (can't be given by all real matrices by choice of basis), then the representation space has the structure of a vector space over the quaternions in such a way that every representation matrix is quaternionic linear!
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 onlinetoolsland.com All Rights Reserved. 本本书屋 版权所有