Support Vector Machines

Support Vector Machines pdf epub mobi txt 电子书 下载 2025

出版者:Springer
作者:Ingo Steinwart
出品人:
页数:601
译者:
出版时间:2008
价格:USD 179.00
装帧:Hardcover
isbn号码:9780387772417
丛书系列:
图书标签:
  • 机器学习 
  • SVM 
  • 计算机科学 
  • 计算机 
  • 计算 
  • 数学 
  • Vector 
  • Theory 
  •  
想要找书就要到 本本书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

This book explains the principles that make support vector machines (SVMs) a successful modelling and prediction tool for a variety of applications. The authors present the basic ideas of SVMs together with the latest developments and current research questions in a unified style. They identify three reasons for the success of SVMs: their ability to learn well with only a very small number of free parameters, their robustness against several types of model violations and outliers, and their computational efficiency compared to several other methods.

Since their appearance in the early nineties, support vector machines and related kernel-based methods have been successfully applied in diverse fields of application such as bioinformatics, fraud detection, construction of insurance tariffs, direct marketing, and data and text mining. As a consequence, SVMs now play an important role in statistical machine learning and are used not only by statisticians, mathematicians, and computer scientists, but also by engineers and data analysts.

The book provides a unique in-depth treatment of both fundamental and recent material on SVMs that so far has been scattered in the literature. The book can thus serve as both a basis for graduate courses and an introduction for statisticians, mathematicians, and computer scientists. It further provides a valuable reference for researchers working in the field.

The book covers all important topics concerning support vector machines such as: loss functions and their role in the learning process; reproducing kernel Hilbert spaces and their properties; a thorough statistical analysis that uses both traditional uniform bounds and more advanced localized techniques based on Rademacher averages and Talagrand's inequality; a detailed treatment of classification and regression; a detailed robustness analysis; and a description of some of the most recent implementation techniques. To make the book self-contained, an extensive appendix is added which provides the reader with the necessary background from statistics, probability theory, functional analysis, convex analysis, and topology.

具体描述

读后感

评分

评分

评分

评分

评分

用户评价

评分

德意志人民的风格。

评分

德意志人民的风格。

评分

德意志人民的风格。

评分

德意志人民的风格。

评分

德意志人民的风格。

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 onlinetoolsland.com All Rights Reserved. 本本书屋 版权所有