Theoretical results suggest that in order to learn the kind of complicated
functions that can represent high-level abstractions (e.g., in
vision, language, and other AI-level tasks), one may need deep architectures.
Deep architectures are composed of multiple levels of non-linear
operations, such as in neural nets with many hidden layers or in complicated
propositional formulae re-using many sub-formulae. Searching
the parameter space of deep architectures is a difficult task, but learning
algorithms such as those for Deep Belief Networks have recently been
proposed to tackle this problem with notable success, beating the stateof-
the-art in certain areas. This monograph discusses the motivations
and principles regarding learning algorithms for deep architectures, in
particular those exploiting as building blocks unsupervised learning of
single-layer models such as Restricted Boltzmann Machines, used to
construct deeper models such as Deep Belief Networks.
具体内容: More precisely ,functions that can be compactly represented by a depth k architecture might require an exponential number of computational elements to be represented by a depth k-1 architecture. 这句意思是k-1层架构可以表示的函数需要的计算元素...
评分具体内容: More precisely ,functions that can be compactly represented by a depth k architecture might require an exponential number of computational elements to be represented by a depth k-1 architecture. 这句意思是k-1层架构可以表示的函数需要的计算元素...
评分讲的比较清晰,提供了关键的数学计算内容,作为综述来看是很不错的选择。但是不亲自推一遍细节很难透彻理解,需要一些机器学习、随机过程、信息论和最优化理论的知识。理论框架介绍的很清楚,有助于理解目前各类变种。
评分具体内容: More precisely ,functions that can be compactly represented by a depth k architecture might require an exponential number of computational elements to be represented by a depth k-1 architecture. 这句意思是k-1层架构可以表示的函数需要的计算元素...
评分具体内容: More precisely ,functions that can be compactly represented by a depth k architecture might require an exponential number of computational elements to be represented by a depth k-1 architecture. 这句意思是k-1层架构可以表示的函数需要的计算元素...
RBM开始实在跟不上了,弃…前面的intuition挺有意思的…
评分弃了
评分相见恨晚。把Hinton的papers翻了个遍,没想到在这本书上才让我对RBM的认识最深刻。
评分Deep Belief Networks / Restricted Boltzmann Machine
评分非常insightful的小书,把deep learning背后的philosophy以及现有的一些results阐述得很清楚。DL现在应用很广,炒得很火,体系千疮百孔,这是好事。Bengio通过此书指了些明路。另此书不适合DL入门。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 onlinetoolsland.com All Rights Reserved. 本本书屋 版权所有