David C. Lay holds a B.A. from Aurora University (Illinois), and an M.A. and Ph.D. from the University of California at Los Angeles. Lay has been an educator and research mathematician since 1966, mostly at the University of Maryland, College Park. He has also served as a visiting professor at the University of Amsterdam, the Free University in Amsterdam, and the University of Kaiserslautern, Germany. He has over 30 research articles published in functional analysis and linear algebra.
As a founding member of the NSF-sponsored Linear Algebra Curriculum Study Group, Lay has been a leader in the current movement to modernize the linear algebra curriculum. Lay is also co-author of several mathematics texts, including Introduction to Functional Analysis, with Angus E. Taylor, Calculus and Its Applications, with L.J. Goldstein and D.I. Schneider, and Linear Algebra Gems-Assets for Undergraduate Mathematics, with D. Carlson, C.R. Johnson, and A.D. Porter.
Professor Lay has received four university awards for teaching excellence, including, in 1996, the title of Distinguished Scholar-Teacher of the University of Maryland. In 1994, he was given one of the Mathematical Association of America's Awards for Distinguished College or University Teaching of Mathematics. He has been elected by the university students to membership in Alpha Lambda Delta National Scholastic Honor Society and Golden Key National Honor Society. In 1989, Aurora University conferred on him the Outstanding Alumnus award. Lay is a member of the American Mathematical Society, the Canadian Mathematical Society, the International Linear Algebra Society, the Mathematical Association of America, Sigma Xi, and the Society for Industrial and Applied Mathematics. Since 1992, he has served several terms on the national board of the Association of Christians in the Mathematical Sciences.
Linear algebra is relatively easy for students during the early stages of the course, when the material is presented in a familiar, concrete setting. But when abstract concepts are introduced, students often hit a brick wall. Instructors seem to agree that certain concepts (such as linear independence, spanning, subspace, vector space, and linear transformations), are not easily understood, and require time to assimilate. Since they are fundamental to the study of linear algebra, students' understanding of these concepts is vital to their mastery of the subject. David Lay introduces these concepts early in a familiar, concrete R n setting, develops them gradually, and returns to them again and again throughout the text so that when discussed in the abstract, these concepts are more accessible.
一本非常好的线性代数基础书。 从考研以后,那些不常用到的数学知识变开始逐渐淡忘、褪色。最近对机器学习产生了兴趣,因此又重新开始温习线性代数。 这本书的内容跟中国的教材相比,并没有增加多少,甚至有些东西还有欠缺。但是跟国内图书的不同在于,它详细的讲解了每个公式...
评分作者在开篇就给了线性代数一个很新奇的定义:“从某种意义上说,线性代数是一门语言,你要像对待外语一样,每天都学。”书中有大量的应用实例,内容结构安排的很好,前几章就引入子空间,向量,线性变换的概念,还介绍了一下线性代数的核心思想和研究内容,而后面几章的内容都...
评分认识一本好书就像遇见对的人,这本书就给我这种感觉,相见恨晚! 先说那些小装饰,章前都有相关知识对应的生活应用实例+配图,虽然内容很少,但也很好地拉近了线代与生活的距离;一些注释会有一些参考文献的名字,偶尔去网上翻一下可以深入了解,甚至能挖到一些厉害的书,很开...
评分PCA这么重要的东西应该与SVD一样专门写一段,而不是放在“7.5 图像处理和统计学中的应用”底下当成普通例子来写。虽然这里PCA写的是真清晰真透彻,秒杀网上无数介绍。另外,SVD讲的太简略了,看完公式也抓不住本质。最好加入几何理解角度,并谈谈与PCA的异同。
评分这是我发现的第三本台湾交大的使用教材。。和他们的OCourse相符。。。大家如果觉得看书太腻,就请结合一下台湾的OCourse视频来学吧。 网址:http://ocw.nctu.edu.tw/riki_detail.php?pgid=50&cgid=12 (不好意思,教材是有偏差,不過聽課還是幫助蠻大的,課程的順序也基本一樣)
非常有意思的讲解
评分最烦这种不停更新版本的了.....
评分全是概念啊
评分比较传统的线代书,第一章就基于矩阵的语言系统地介绍了大部分线性代数的核心概念。就是线性空间那边有点乱,既然是在第一章基础上用更抽象的线性空间的语言进一步介绍线性代数概念的,不如干脆先抛开矩阵一会,不要一会矩阵,一会线性变换的。
评分极好的线性代数入门书
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 onlinetoolsland.com All Rights Reserved. 本本书屋 版权所有