This book continues the treatment of the arithmetic theory of elliptic curves begun in the first volume. The book begins with the theory of elliptic and modular functions for the full modular group r(1), including a discussion of Hekcke operators and the L-series associated to cusp forms. This is followed by a detailed study of elliptic curves with complex multiplication, their associated Grössencharacters and L-series, and applications to the construction of abelian extensions of quadratic imaginary fields. Next comes a treatment of elliptic curves over function fields and elliptic surfaces, including specialization theorems for heights and sections. This material serves as a prelude to the theory of minimal models and Néron models of elliptic curves, with a discussion of special fibers, conductors, and Ogg's formula. Next comes a brief description of q-models for elliptic curves over C and R, followed by Tate's theory of q-models for elliptic curves with non-integral j-invariant over p-adic fields. The book concludes with the construction of canonical local height functions on elliptic curves, including explicit formulas for both archimedean and non-archimedean fields.
發表於2025-01-14
Advanced Topics in the Arithmetic of Elliptic Curves 2025 pdf epub mobi 電子書 下載
圖書標籤: 數論 數學 elliptic_curves elliptic curves 解析數論7 Number_Theory
only chapter 2
評分only chapter 2
評分only chapter 2
評分only chapter 2
評分only chapter 2
Advanced Topics in the Arithmetic of Elliptic Curves 2025 pdf epub mobi 電子書 下載