Cathy O’Neil earned a Ph.D. in math from Harvard, was postdoc at the MIT math department, and a professor at Barnard College where she published a number of research papers in arithmetic algebraic geometry. She then chucked it and switched over to the private sector. She worked as a quant for the hedge fund D.E. Shaw in the middle of the credit crisis, and then for RiskMetrics, a risk software company that assesses risk for the holdings of hedge funds and banks. She is currently a data scientist on the New York start-up scene, writes a blog at mathbabe.org, and is involved with Occupy Wall Street.
Rachel Schutt is a Senior Research Scientist at Johnson Research Labs, and most recently was a Senior Statistician at Google Research in the New York office. She is also an adjunct assistant professor in the Department of Statistics at Columbia University where she taught Introduction to Data Science. She earned a PhD from Columbia University in statistics, and masters degrees in mathematics and operations research from the Courant Institute and Stanford University, respectively. Her statistical research interests include modeling and analyzing social networks, epidemiology, hierarchical modeling and Bayesian statistics. Her education-related research interests include curriculum design.
Rachel enjoys designing and creating complex, thought-provoking situations for other people. She won the Howard Levene Outstanding Teaching Award at Columbia and also taught probability and statistics at Cooper Union, and remedial math as a high school teacher in San Jose, CA. She was a mathematics curriculum expert for the Princeton Review, and won a game design award for best family game at the Come Out and Play Festival in New York.
发表于2024-11-21
Doing Data Science 2024 pdf epub mobi 电子书
我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看...
评分我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看...
评分我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看过了 我看...
评分这本书蛮不错的,就是看的时候碰到一些小错误,记录如下,如果本书的编者看到了,也方便勘误。 P43 第11行 “事”改为“是” P45 第9行 “歌”改为“个” P52 图3-6说明文字第2行 “直”改为“致” P96 正文第6行 “Emprical”改为“Empirical” P103 倒数第4行 “...
评分Now that answering complex and compelling questions with data can make the difference in an election or a business model, data science is an attractive discipline. But how can you learn this wide-ranging, interdisciplinary field? With this book, you’ll get...
图书标签: 数据挖掘 数据分析 数据科学 datascience 机器学习 计算机 统计 O'Reilly
Now that answering complex and compelling questions with data can make the difference in an election or a business model, data science is an attractive discipline. But how can you learn this wide-ranging, interdisciplinary field? With this book, you’ll get material from Columbia University’s "Introduction to Data Science" class in an easy-to-follow format.
Each chapter-long lecture features a guest data scientist from a prominent company such as Google, Microsoft, or eBay teaching new algorithms, methods, or models by sharing case studies and actual code they use. You’ll learn what’s involved in the lives of data scientists and be able to use the techniques they present.
Guest lectures focus on topics such as:
Machine learning and data mining algorithms
Statistical models and methods
Prediction vs. description
Exploratory data analysis
Communication and visualization
Data processing
Big data
Programming
Ethics
Asking good questions
If you’re familiar with linear algebra, probability and statistics, and have some programming experience, this book will get you started with data science.
Doing Data Science is collaboration between course instructor Rachel Schutt (also employed by Google) and data science consultant Cathy O’Neil (former quantitative analyst for D.E. Shaw) who attended and blogged about the course.
看这种书主要不是看算法吧,主要看看一个“流程性”的东西,拿到数据,怎么explore,怎么telling story,试model之类的。 里面有些和不同公司访谈性的东西还比较有趣。
评分作为入门,讲的太难;但是Data science is not for the faint heart.
评分#:无
评分很多地方都讲到了,语言也很简练,易理解
评分很多地方都讲到了,语言也很简练,易理解
Doing Data Science 2024 pdf epub mobi 电子书