Catherine ("Cathy") Helen O'Neil is an American mathematician and the author of the blog mathbabe.org and several books on data science, including Weapons of Math Destruction. She was the former Director of the Lede Program in Data Practices at Columbia University Graduate School of Journalism, Tow Center and was employed as Data Science Consultant at Johnson Research Labs.
She lives in New York City and is active in the Occupy movement.
发表于2025-02-24
Weapons of Math Destruction 2025 pdf epub mobi 电子书
感谢 recall 这本书的不知名同学,谢谢你逼得我用4个小时读完。 作者创造了“数学杀伤性武器”(Weapons of Math Destruction, WMD)这个词指代统计模型,探讨现实生活中统计模型的大规模应用对社会的影响。 正面例子是棒球、篮球比赛的分析,可以即时调整战术(参考《点球成金...
评分作者在华尔街对冲基金德绍集团担任过金融工程师,后来去银行做过风险分析,再后来去做旅游网站的用户分析。后来辞职专门揭露美国社会生活背后的各种算法的阴暗面。 书中提到的算法的技术缺陷,我归纳为两点:第一个比较致命:不准确。不准确有两种体现,首先是算法先天的问题,...
评分 评分大数据是近年来特别火热的词,不管是不是互联网企业,都随时往大数据身上靠,仿佛一下子能提高自己逼格一样。在这种火热的气氛中,很多人往往对于大数据能做什么,做的好事多还是坏事多,不去反思和检讨,也很少有人愿意去听别人的反思。 音乐平台总监们的失算 记得《中国新说...
图书标签: 大数据 社会学 美国 数字社会学 inequality 数学 社会 政治科学
A former Wall Street quant sounds an alarm on mathematical modeling—a pervasive new force in society that threatens to undermine democracy and widen inequality.
We live in the age of the algorithm. Increasingly, the decisions that affect our lives—where we go to school, whether we get a car loan, how much we pay for health insurance—are being made not by humans, but by mathematical models. In theory, this should lead to greater fairness: Everyone is judged according to the same rules, and bias is eliminated. But as Cathy O’Neil reveals in this shocking book, the opposite is true. The models being used today are opaque, unregulated, and uncontestable, even when they’re wrong. Most troubling, they reinforce discrimination: If a poor student can’t get a loan because a lending model deems him too risky (by virtue of his race or neighborhood), he’s then cut off from the kind of education that could pull him out of poverty, and a vicious spiral ensues. Models are propping up the lucky and punishing the downtrodden, creating a “toxic cocktail for democracy.” Welcome to the dark side of Big Data.
Tracing the arc of a person’s life, from college to retirement, O’Neil exposes the black box models that shape our future, both as individuals and as a society. Models that score teachers and students, sort resumes, grant (or deny) loans, evaluate workers, target voters, set parole, and monitor our health—all have pernicious feedback loops. They don’t simply describe reality, as proponents claim, they change reality, by expanding or limiting the opportunities people have. O’Neil calls on modelers to take more responsibility for how their algorithms are being used. But in the end, it’s up to us to become more savvy about the models that govern our lives. This important book empowers us to ask the tough questions, uncover the truth, and demand change.
更像是essay合集。道理都还是中肯的。读起来也很快。个人口味问题,更喜欢不论长短薄厚,都能一板一眼扎实严谨的论述结构,而不过多依靠于类似类比。
评分名字起得不错,作者对“数学杀伤性武器“的定义也很明确:opaque, large scale ,disruptive. 现实生活中的例子也有清晰阐述,包括 value added model 并不能真正反映教师的水平(很多差生+很多好生的班级能够进步的空间不大,相反比较中等的班级更容易通过提高成绩而增加教师的评分);大数据分析信贷对弱势群体的不公;自动调班系统让零售业打工者疲于奔命等。
评分羊烤这缠头不是早就黑过了蟆
评分大数据伦理讨论小合集。身在tech公司做大数据的东西,经常考虑这方面的东西。模型再好也难以100%正确,而那很小的一部分却的确能影响他们的生活。赞同作者的一些批评,但是并不能因噎废食。研究者更应该努力把模型做得更好(大部分批评都焦聚在feature selection不对,model不对之类的方面),因为相比起来,alternative更加不可取---信息太少纯粹靠拍脑袋做决定。另外,这名字起得太好了!!
评分各种案例堆积,看不下去。对每个模型bad feedback loop都分析了,但是alternative呢?transparency怎么做不够深入
Weapons of Math Destruction 2025 pdf epub mobi 电子书